General equation of an Ellipse:

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1 \quad \text { or } \quad \frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Think of an ellipse as a stretched circle. We will notice in the equation that the coefficients of x^{2} and y^{2} are not the same but they both have the same signs.

Put the following into standard form:

$$
4 x^{2}+25 y^{2}-8 x+150 y+129=0
$$

Step 1: Group terms.

$$
4 x^{2}-8 x+25 y^{2}+150 y=-129
$$

Step 2: Complete the square.
a) Remove coefficients (factor out)

$$
4\left(x^{2}-2 x \quad\right)+25\left(y^{2}+6 y \quad\right)=-129
$$

b) Use $\left(\frac{b}{2}\right)^{2}$ and make sure to multiply by the number outside
before adding to the other side.
$4\left(x^{2}-2 x+1\right)+25\left(y^{2}+6 y+9\right)=-129+4+225$
$4(x-1)^{2}+25(y+3)^{2}=100$

DON'T FORGET TO
DOWNLOAD THE FORMULA SHEET (tutorial website)

Step 3: Divide so that the equation is equal to 1 .

$$
\frac{4(x-1)^{2}}{100}+\frac{25(y+3)^{2}}{100}=\frac{100}{100}
$$

$$
\frac{(x-1)^{2}}{25}+\frac{(y+3)^{2}}{4}=1
$$

Center:(1, -3)

$$
a=5 \quad b=2
$$

Vertices: (-4, -3), (6, -3)
Co-vertices: (1, -1), (1, -5)
$a^{2}-b^{2}=c^{2}$

$$
25-4=21 \text { so } \sqrt{21}=c
$$

Foci: $(1 \pm \sqrt{21},-3)=(5.6,-3)$ and $(-3.6,-3)$

