Conics: Circles and Parabolas

Saturday, March 10, 2012 2:09 PM

Circles

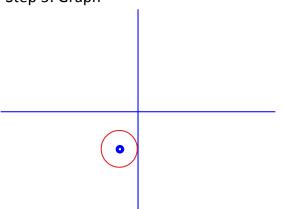
Standard form of a circle: $(x - h)^2 + (y - k)^2 = r^2$ (h, k) = Center r = radius

Convert to standard form: $x^2 + y^2 + 2x + 6y + 9 = 0$ Method: Completing the Square

Step 1: Arrange x, y, and constant terms according to the general form: $x^2 + 2x + ___ + y^2 + 6y___ = -9$

Step 2: Complete the square using: $\left(\frac{b}{2}\right)^2$ $x^2 + 2x + 1 + y^2 + 6y + 9 = -9 + 1 + 9$ $(x + 1)^2 + (y + 3)^2 = 1$ Center: (-1, -3) and radius: 1

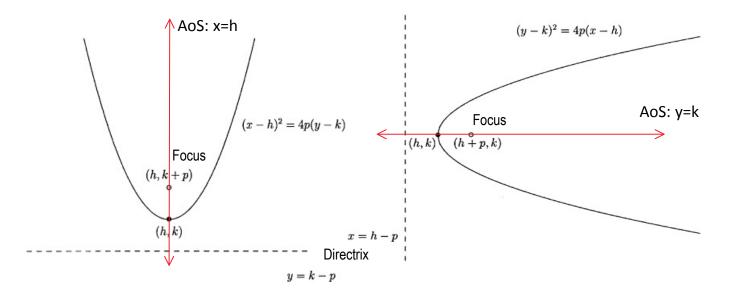
Step 3: Graph



Circle Ellipse Parabale Hyperbola

<u>General Form of a Parabola</u>: $(x - h)^2 = 4p(y - k)$ or $(y - k)^2 = 4p(x - h)$

Note: The square portion indicates what the axis of symmetry follows.



Convert to standard form and graph the parabola: $x^2 - 4x + 2y - 8 = 0$

Step 1: Arrange terms like general form:

 $x^2 - 4x = -2y + 8$

Step 2: Complete the square remember $\left(\frac{b}{2}\right)^2$. $x^2 - 4x + 4 = -2y + 8 + 4$ $(x - 2)^2 = -2y + 12$ $(x - 2)^2 = -2(y - 6)$

Note: Becareful to factor out so the the coefficient of x and y are both 1. This is how we find p.

Step 3: Graph.

- a) We need (h, k) and p in order to graph correctly.
- b) Vertex: (2, 6) 4p = -2 so $p = -\frac{1}{2}$ AoS (x = h): x=2
- c) Because p is negative we know that the graph opens down.
- d) **Directrix**: y=k-p so y=6 (-1/2) = 6.5 **y=6.5**
- e) Focus: (h, k+p)= (2, 6+(-1/2)) = (2, 5.5)

