Circles

Standard form of a circle: $(x-h)^{2}+(y-k)^{2}=r^{2}$
(h, k) = Center r = radius
Convert to standard form: $x^{2}+y^{2}+2 x+6 y+9=0$
Method: Completing the Square

Step 1: Arrange x, y, and constant terms according to the
general form: $x^{2}+2 x+$ \qquad $+y^{2}+6 y$ \qquad $=-9$

Step 2: Complete the square using: $\left(\frac{b}{2}\right)^{2}$
$x^{2}+2 x+1+y^{2}+6 y+9=-9+1+9$
$(x+1)^{2}+(y+3)^{2}=1$
Center: (-1, -3) and radius: 1

Step 3: Graph

General Form of a Parabola: $(x-h)^{2}=4 p(y-k)$ or $(y-k)^{2}=4 p(x-h)$
Note: The square portion indicates what the axis of symmetry follows.

Convert to standard form and graph the parabola:

$$
x^{2}-4 x+2 y-8=0
$$

Step 1: Arrange terms like general form:

$$
x^{2}-4 x=-2 y+8
$$

Step 2: Complete the square remember $\left(\frac{b}{2}\right)^{2}$.
$x^{2}-4 x+4=-2 y+8+4$
$(x-2)^{2}=-2 y+12$
$(x-2)^{2}=-2(y-6)$

Note: Becareful to factor out so the the coefficient of x and y are both 1. This is how we find p.

Step 3: Graph.
a) We need (h, k) and p in order to graph correctly.
b) Vertex: $(2,6) \quad 4 p=-2$ so $p=-\frac{1}{2}$ AoS $(x=h)$: $x=2$
c) Because p is negative we know that the graph opens down.
d) Directrix: $y=k-p$ so $y=6-(-1 / 2)=6.5 \quad y=6.5$
e) Focus: $(h, k+p)=(2,6+(-1 / 2))=(2,5.5)$

