Conics: Hyperbolas

Saturday, March 10, 2012
4:07 PM

Here we come to the most complicated of the conics.
Standard form of a Hyperbola:
$\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$ or $\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1$
Horizontal Transverse
Vertical Transverse

Hyperbola
Note the differences: the placement of the x or y terms. This is because we now have a negative sign in between. Which ever term is above the a^{2} term determines which way the Transverse axis runs.

Put the equation into the standard form for a Hyperbola.

$$
4 x^{2}-9 y^{2}-32 x+36 y-8=0
$$

Step 1: Group Terms.

$$
4 x^{2}-32 x-9 y^{2}+36 y=8
$$

Step 2: Complete the square.
a) Remove the coefficents (factor out)

$$
\begin{aligned}
& 4\left(x^{2}-8 x\right)-9\left(y^{2}-4 y \quad\right)=8 \\
& 4\left(x^{2}-8 x+16\right)-9\left(y^{2}-4 y+4\right)=8+64-36 \\
& 4(x-4)^{2}-9(y-2)^{2}=36
\end{aligned}
$$

Step 3: Divide.

$$
\begin{aligned}
& \frac{4(x-4)^{2}}{36}-\frac{9(y-2)^{2}}{36}=\frac{36}{36} \\
& \frac{(x-4)^{2}}{9}-\frac{(y-2)^{2}}{4}=1
\end{aligned}
$$

Center: $(4,2)$
$a^{2}+b^{2}=c^{2} \quad 9+4=13 \quad c=\sqrt{13}$
Vertices: $(7,2),(1,2)$

Foci: $(4 \pm \sqrt{13}, 2)=(7.6,2)$ and $(.4,2)$
Asymptotes: $y=2 \pm \frac{2}{3}(x-4)$

