Conics: Hyperbolas

Saturday, March 10, 2012 4:07 PM

Here we come to the most complicated of the conics. Standard form of a Hyperbola:

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1 \text{ or } \frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$$

Horizontal Transverse

Vertical Transverse

Note the differences: the placement of the x or y terms. This is because we now have a negative sign in between. Which ever term is above the a^2 term determines which way the Transverse axis runs.

Step 1: Group Terms. $4x^2 - 32x - 9y^2 + 36y = 8$

Step 2: Complete the square.

Step 3: Divide.

a) Remove the coefficents (factor out) $4(x^2 - 8x) - 9(y^2 - 4y) = 8$ $4(x^2 - 8x + 16) - 9(y^2 - 4y + 4) = 8 + 64 - 36$ $4(x-4)^2 - 9(y-2)^2 = 36$

Center: (4, 2) $a^2 + b^2 = c^2$ 9 + 4 = 13 $c = \sqrt{13}$ Vertices: (7,2), (1,2) Foci: $(4 \pm \sqrt{13}, 2) = (7.6, 2)$ and (.4, 2)Asymptotes: $y = 2 \pm \frac{2}{2}(x-4)$

