Let's start with an example:
$S_{1}=1=1^{2}$
$S_{2}=1+3=2^{2}$
$S_{3}=1+3+5=3^{2}$
$S_{4}=1+3+5+7=4^{2}$

If we are to make a conclusion from this pattern then we can conclude that the sum of the first n odd integers is $S_{n}=1+3+5+7+\ldots+(2 n-1)=n^{2}$
We need a way to prove this works for all odd integers.
This method is called Induction.

Induction

Let P_{n} be a statement involving the postive integer, n . If

1. P_{1} is true
2. The truth of P_{k} implies the truth of P_{k+1}, for every postitive integer k, then P_{n} Must be true for all positive integers n .

This is best learned by working through examples.
Preliminary Example: Finding the $\mathrm{k}+1$ term.
a). $\quad P_{k}: S_{k}=\frac{k^{2}(k+1)^{2}}{4}$

$$
P_{k+1}: S_{k+1}=\frac{(k+1)^{2}(k+1+1)^{2}}{4}=\frac{(k+1)^{2}(k+2)^{2}}{4}
$$

b). $P_{k}: S_{k}=1+5+9+\ldots+\lfloor 4(k-1)-3\rfloor+(4 k-3)$

$$
\begin{aligned}
& P_{k+1}: S_{k+1}=1+5+9+\ldots+\lfloor 4(k-1+1)-3\rfloor+\lfloor 4(k+1)-3\rfloor \\
& P_{k+1}: S_{k+1}=1+5+9+\ldots+\lfloor 4 k-3\rfloor+(4 k+1)
\end{aligned}
$$

Let's try using Induction now.
Remember: $S_{n}=1+3+5+7+\ldots+(2 n-1)=n^{2}$
Step 1. Show that the formula actually works for $\mathrm{n}=1$
$S_{n}=1=1^{2}$ True
Step 2. Plug in k for n . (this step is mostly a formality).
$S_{k}=1+3+5+7+\ldots+(2 k-1)=k^{2}$

Step 3. Show it is true for the $k+1$ term. Here is where most of the work happens.
$S_{k+1}=1+3+5+7+\ldots+(2 k-1)+(2(k+1)-1)=(k+1)^{2}$ True or not???
Simplify the left hand side: MAKE A KEY SUBSTITUTION!
$S_{k+1}=1+3+5+7+\ldots+(2 k-1)+(2 k+1)$
$S_{k+1}=k^{2}+(2 k+1)$ This is why we did step 2.
Now simplify. In this example we are going to factor.
$S_{k+1}=k^{2}+2 k+1=(k+1)^{2}$
Because we were able to make the left side equal the right we have proven the statement true by induction.

One last example.

$$
S_{n}=1^{2}+2^{2}+3^{2}+4^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Step 1. Plug in 1 to verify it actually works for the first integer.
$S_{1}=1^{2}=\frac{1(1+1)(2(1)+1)}{6}=\frac{6}{6}=1$ True
Step 2. Plug k into the problem.

$$
\begin{aligned}
& \text { Step } \\
& S_{k}=1^{2}+2^{2}+3^{2}+4^{2}+\ldots+k^{2}=\frac{k(k+1)(2 k+1)}{6} \\
& \begin{aligned}
S_{k+1} & =1^{2}+2^{2}+3^{2}+4^{2}+\ldots+k^{2}+(k+1)^{2}=\frac{(k+1)((k+1)+1)(2(k+1)+1)}{6} \\
& =\frac{(k+1)(k+2)(2 k+3)}{6}
\end{aligned}
\end{aligned}
$$

Make that key replacement from step 2.

$$
\begin{aligned}
& S_{k+1}=1^{2}+2^{2}+3^{2}+4^{2}+\ldots+k^{2}+(k+1)^{2}=\frac{(k+1)(k+2)(2 k+3)}{6} \\
& S_{k+1}=\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2}=\frac{(k+1)(k+2)(2 k+3)}{6}
\end{aligned}
$$

Simplify the left side.
$S_{k+1}=\frac{k(k+1)(2 k+1)}{6}+\frac{6(k+1)^{2}}{6}=\frac{k(k+1)(2 k+1)+6(k+1)^{2}}{6}$ Factor out the $k+1$ term on top.
$S_{k+1}=\frac{k(k+1)(2 k+1)+6(k+1)^{2}}{6}=\frac{(k+1)[k(2 k+1)+6(k+1)]}{6}$
Continue to simplify.
$S_{k+1}=\frac{(k+1)[k(2 k+1)+6(k+1)]}{6}=\frac{(k+1)\left[2 k^{2}+7 k+6\right]}{6}=\frac{(k+1)(k+2)(2 k+3)}{6}$
Therefore we have proven it true by induction.

