Vectors and Dot Product

Sunday, February 05, 2012
6:18 PM

Dot Product:
$u \cdot v=u_{1} v_{1}+u_{2} v_{2}$

Example: $\langle 4,5\rangle \cdot\langle 2,3\rangle$ and $\langle 2,-1\rangle \cdot\langle 1,2\rangle$

$$
4(2)+5(3)=23 \quad 2(1)+(-1)(2)=0
$$

If you get zero as a result of a dot product then we know that the original vectors are perpendicular.

Finding Angles between any two vectors.

$\cos \theta=\frac{u \cdot v}{\|u\|\|v\|}$
Example: $\langle 4,3\rangle,\langle 3,5\rangle$
Remember Magnitude:

$$
\begin{aligned}
& \cos \theta=\frac{4(3)+3(5)}{5(\sqrt{34})} \\
& \theta=\cos ^{-1} \frac{27}{5 \sqrt{34}}=22.2^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \|v\|=\sqrt{v_{1}^{2}+v_{2}^{2}} \\
& =\sqrt{4^{2}+3^{2}}=5 \\
& =\sqrt{3^{2}+5^{2}}=\sqrt{9+25}=\sqrt{34}
\end{aligned}
$$

Work

Work is force done multiplied by the distance over which the force was applied.
$W=F \cdot \overrightarrow{P Q}$
$W=\cos \theta\|F\|\|\overrightarrow{P Q}\|$
Example: A force of 45 pounds in the direction of 30° above the horizontal is required to slide a table across a floor. Find the work done
if the table is dragged 20 feet.
$W=\cos 30^{\circ}(45)(20)=779.42$ foot-pounds

